Add like
Add dislike
Add to saved papers

Regulation of morphine-induced synaptic alterations: Role of oxidative stress, ER stress, and autophagy.

Journal of Cell Biology 2016 October 25
Our findings suggest that morphine dysregulates synaptic balance in the hippocampus, a key center for learning and memory, via a novel signaling pathway involving reactive oxygen species (ROS), endoplasmic reticulum (ER) stress, and autophagy. We demonstrate in this study that exposure of morphine to hippocampal neurons leads to a reduction in excitatory synapse densities with a concomitant enhancement of inhibitory synapse densities via activation of the μ opioid receptor. Furthermore, these effects of morphine are mediated by up-regulation of intracellular ROS from NADPH oxidase, leading, in turn, to sequential induction of ER stress and autophagy. The detrimental effects of morphine on synaptic densities were shown to be reversed by platelet-derived growth factor (PDGF), a pleiotropic growth factor that has been implicated in neuroprotection. These results identify a novel cellular mechanism involved in morphine-mediated synaptic alterations with implications for therapeutic interventions by PDGF.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app