JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Structural Solution to Enhance the Sensitivity of a Self-Powered Pressure Sensor for an Artificial Tactile System.

Structural design factors of sensor units have been studied in order to enhance the sensitivity of pressure sensors based on utilizing a piezoelectric material for an artificial tactile sensor. In this study, we have primarily demonstrated the effect of a square pattern array design in a pressure sensor using ZnO nanowires. Nanowires grown on the edge of cells can be bent easily because of growth direction, density control, and buckling effect. Since smaller square pattern arrays induce a higher circumference to cell area ratio, if one sensor unit consists of many micro-level square pattern arrays, the design enhances the piezoelectric efficiency and the sensitivity. As a result, 20 μ m×20 μ m cell arrays showed three times higher pressure sensitivity than 250 μ m×250 μ m cell array structures at a pressure range from 4 kPa to 14 kPa. The induced piezoelectric voltage with the same pressure level also increased drastically. Therefore, the square pattern array design is more appropriate for a high-sensitive pressure sensor than a simple one-body cell design for tactile systems, and it has the advantage of better power efficiency, which is also important for artificial tactile systems. This suggested cell array design can be applied to various systems using piezoelectric nanowires.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app