Add like
Add dislike
Add to saved papers

Fourier transform infra-red spectroscopic signatures for lung cells' epithelial mesenchymal transition: A preliminary report.

Infra red (IR) spectral characterization can provide label-free cellular metabolic signatures of normal and diseased circumstances in a rapid and non-invasive manner. Present study endeavoured to enlist Fourier transform infra red (FTIR) spectroscopic signatures for lung normal and cancer cells during chemically induced epithelial mesenchymal transition (EMT) for which global metabolic dimension is not well reported yet. Occurrence of EMT was validated with morphological and immunocytochemical confirmation. Pre-processed spectral data was analyzed using ANOVA and principal component analysis-linear discriminant analysis (PCA-LDA). Significant differences observed in peak area corresponding to biochemical fingerprint (900-1800cm-1 ) and high wave-number (2800-3800cm-1 ) regions contributed to adequate PCA-LDA segregation of cells undergoing EMT. The findings were validated by re-analysis of data using another in-house built binary classifier namely vector valued regularized kernel approximation (VVRKFA), in order to understand EMT progression. To improve the classification accuracy, forward feature selection (FFS) tool was employed in extracting potent spectral signatures by eliminating undesirable noise. Gradual increase in classification accuracy with EMT progression of both cell types indicated prominence of the biochemical alterations. Rapid changes in cellular metabolome noted in cancer cells within first 24h of EMT induction along with higher classification accuracy for cancer cell groups in comparison to normal cells might be attributed to inherent differences between them. Spectral features were suggestive of EMT triggered changes in nucleic acid, protein, lipid and bound water contents which can emerge as the useful markers to capture EMT related cellular characteristics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app