Add like
Add dislike
Add to saved papers

Mass flows and fate of per- and polyfluoroalkyl substances (PFASs) in the wastewater treatment plant of a fluorochemical manufacturing facility.

Although industrial sites producing perfluoroalkyl and polyfluoroalkyl substances (PFASs) may introduce these chemicals into the aquatic environment, they are rarely investigated. This study entailed measuring concentrations, mass flows and the fate of 51 PFASs in an industrial wastewater treatment plant receiving raw effluents from a fluorochemical manufacturing facility. Grab and 24-h composite samples were collected at various stages of wastewater treatment over four sampling campaigns. One perfluoroalkyl carboxylic acid (PFCA) and nine fluorotelomers (FTs) were systematically detected in the facility's raw effluent. The overall PFCA mass flow ranged from 0.6 to 8.6g/day and was negligible compared to the overall mass flow of FTs (from 647 to 2,892g/day). PFCA mass flows increased drastically after secondary treatment (degradation of precursors) and decreased notably after the floatation tank (adsorption onto floatation sludge), but remained at relatively high levels in the final effluent (from 21 to 247g/day). Similar patterns in mass flow were observed for the FTs, with mass loadings discharged into the river ranging from 1,623 to 6,963g/day. Despite analyzing dozens of PFASs, adsorbable organic fluorine determination and oxidative conversion of PFCA precursors showed that a significant part of PFASs remained unidentified. Nevertheless, two overwhelmingly predominant PFASs-6:2 Fluorotelomer sulfonamide alkylbetaine (6:2 FTAB) and 6:2 Fluorotelomer sulfonamide propyl N,N dimethylamine (M4)-were detected and quantified for the first time in water samples, accounting for >75% of the total PFAS mass flow in the final effluent. This study also provided evidence of soil contamination by the aerosol produced over the aeration basin and inadvertent spillage of pieces of sludge cake.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app