Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Conservatism and variability of gene expression profiles among homeologous transcription factors in Xenopus laevis.

Xenopus laevis has an allotetraploid genome of 3.1Gb, in contrast to the diploid genome of a closely related species, Xenopus tropicalis. Here, we identified 412 genes (189 homeolog pairs, one homeologous gene cluster pair, and 28 singletons) encoding transcription factors (TFs) in the X. laevis genome by comparing them with their orthologs from X. tropicalis. Those genes include the homeobox gene family (Mix/Bix, Lhx, Nkx, Paired, POU, and Vent), Sox, Fox, Pax, Dmrt, Hes, GATA, T-box, and some clock genes. Most homeolog pairs for TFs are retained in two X. laevis subgenomes, named L and S, at higher than average rates (87.1% vs 60.2%). Among the 28 singletons, 82.1% were deleted from chromosomes of the S subgenome, a rate similar to the genome-wide average (82.1% vs 74.6%). Interestingly, nkx2-1, nkx2-8, and pax9, which reside consecutively in a postulated functional gene cluster, were deleted from the S chromosome, suggesting cluster-level gene regulation. Transcriptome correlation analysis demonstrated that TF homeolog pairs tend to have more conservative developmental expression profiles than most other types of genes. In some cases, however, either of the homeologs may show strongly different spatio-temporal expression patterns, suggesting neofunctionalization, subfunctionalization, or nonfunctionalization after allotetraploidization. Analyses of otx1 suggests that homeologs with much lower expression levels have undergone greater amino acid sequence diversification. Our comprehensive study implies that TF homeologs are highly conservative after allotetraploidization, possibly because the DNA sequences that they bind were also duplicated, but in some cases, they differed in expression levels or became singletons due to dosage-sensitive regulation of their target genes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app