Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

In vivo Functional Consequences of Human THRA Variants Expressed in the Zebrafish.

BACKGROUND: Heterozygous mutations in the thyroid hormone receptor alpha (THRA) gene cause resistance to thyroid hormone alpha (RTHα), a disease characterized by variable manifestations reminiscent of untreated congenital hypothyroidism but a raised triiodothyronine/thyroxine ratio and normal thyrotropin levels. It was recently described that zebrafish embryos expressing a dominant negative (DN) form of thraa recapitulate the key features of RTHα, and that zebrafish and human receptors are functionally interchangeable.

METHODS: This study expressed several human thyroid hormone receptor alpha (hTRα) variants in zebrafish embryos and analyzed the resulting phenotypes.

RESULTS: All hTRα-injected embryos showed variable defects, including cerebral and cardiac edema likely caused by an aberrant looping during heart development, anemia, and an incomplete formation of the vascular network. Moreover, the hTRα-injected embryos presented severe defects of motorneurons and craniofacial development, thus affecting their autonomous feeding and swimming behaviors. Surprisingly, expression of all hTRα mutants had no detectable effect on thyrotropin beta and thyrotropin-releasing hormone transcripts, indicating that their DN action is limited on the thyroid hormone reception beta 2 targets at the hypothalamic/pituitary level in vivo. As previously described in vitro, treatment with high triiodothyronine doses can efficiently revert the observed defects only in embryos injected with missense hTRα variants.

CONCLUSION: Injection of human THRA variants in zebrafish embryos causes tissue-specific defects recapitulating most of the RTHα clinical and biochemical manifestations. The described manipulation of zebrafish embryos represents a novel in vivo model to screen the functional consequences of THRA variants and the rescue potential of new therapeutic compounds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app