JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Out of Equilibrium Self-Assembly of Janus Nanoparticles: Steering It from Disordered Amorphous to 2D Patterned Aggregates.

Solvent evaporation driven self-assembly of Janus nanoparticles (J-NPs) has been simulated employing lattice-gas models to investigate the possible emergence of new superlattices. Depending on the chemical nature of NP faces (hence solvophilicity and relative interaction strength), zebra-like or check-like patterns and micellar agglomerates can be obtained. Vesicle-like aggregates can be produced by micelle-based corrals during heterogeneous evaporation. Patterns formed during aggregation appear to be robust against changes in evaporation modality (i.e., spinodal or heterogeneous) or interaction strengths, and they are due to a strictly nanoscopic orientation of single J-NPs in all cases. Due to the latter feature, the aggregate size growth law N(t) ∝ ta has its exponent a markedly depending on the chemical nature of the J-NPs involved in spite of the unvaried growth mechanism. We interpret such a finding as connected to the increasingly stricter orientation pre-requirements for successful (binding) NP landing upon going from isotropic (a ≃ 0.50), to "zebra" (a ≃ 0.38), to "check" (a ≃ 0.23), and finally to "micelle" (a = 0.15-0.17) pattern forming NPs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app