Add like
Add dislike
Add to saved papers

Hybrids of Reduced Graphene Oxide and Hexagonal Boron Nitride: Lightweight Absorbers with Tunable and Highly Efficient Microwave Attenuation Properties.

Sandwichlike hybrids of reduced graphene oxide (rGO) and hexagonal boron nitride (h-BN) were prepared via heat treatment of the self-assemblies of graphene oxide (GO) and ammonia borane (AB). TG-DSC-QMS analysis indicate a mutually promoted redox reaction between GO and AB; 900 °C is a proper temperature to transfer the hybrids into inorganic sandwiches. XRD, XPS, and Raman spectra reveal the existence of h-BN embedded into the rGO frameworks. High-resolution SEM and TEM indicate the layer-by-layer structure of the hybrids. The content of h-BN can be increased with increase of the mass ratio of AB and the highest heat treatment temperature. The complex permittivity and the microwave absorption are tunable with the variation of the content of h-BN. When the mass ratio of GO/AB is 1:1, the microwave absorption of the hybrid treated at 900 °C is preferable in the range of 6-18 GHz. A minimum reflection loss, -40.5 dB, was observed at 15.3 GHz for the wax composite filled with 25 wt % hybrids at the thickness of 1.6 mm. The qualified frequency bandwidth reaches 5 GHz at this thickness with a low surface density close to 1.68 kg/m2 . The layer-by-layer structure of the hybrid makes great contributions to the increased approaches and possibilities of electron migrating and hopping, which has both highly efficient dielectric loss and excellent impedance matching for microwave consumption.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app