JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Structural characterisation of high affinity Siglec-2 (CD22) ligands in complex with whole Burkitt's lymphoma (BL) Daudi cells by NMR spectroscopy.

Scientific Reports 2016 November 4
Siglec-2 undergoes constitutive endocytosis and is a drug target for autoimmune diseases and B cell-derived malignancies, including hairy cell leukaemia, marginal zone lymphoma, chronic lymphocytic leukaemia and non-Hodgkin's lymphoma (NHL). An alternative to current antibody-based therapies is the use of liposomal nanoparticles loaded with cytotoxic drugs and decorated with Siglec-2 ligands. We have recently designed the first Siglec-2 ligands (9-biphenylcarboxamido-4-meta-nitrophenyl-carboxamido-Neu5Acα2Me, 9-BPC-4-mNPC-Neu5Acα2Me) with simultaneous modifications at C-4 and C-9 position. In the current study we have used Saturation Transfer Difference (STD) NMR spectroscopy to monitor the binding of 9-BPC-4-mNPC-Neu5Acα2Me to Siglec-2 present on intact Burkitt's lymphoma Daudi cells. Pre-treatment of cells with periodate resulted in significantly higher STD NMR signal intensities for 9-BPC-4-mNPC-Neu5Acα2Me as the cells were more susceptible to ligand binding because cis-binding on the cell surface was removed. Quantification of STD NMR effects led to a cell-derived binding epitope of 9-BPC-4-mNPC-Neu5Acα2Me that facilitated the design and synthesis of C-2, C-3, C-4 and C-9 tetra-substituted Siglec-2 ligands showing an 88-fold higher affinity compared to 9-BPC-Neu5Acα2Me. This is the first time a NMR-based binding study of high affinity Siglec-2 (CD22) ligands in complex with whole Burkitt's lymphoma Daudi cells has been described that might open new avenues in developing tailored therapeutics and personalised medicine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app