Add like
Add dislike
Add to saved papers

Nanoring formation via in situ photoreduction of silver on a virus scaffold.

Nanotechnology 2016 December 3
The fabrication of plasmonic nanorings remains of substantial interest by virtue of their enhanced electric and magnetic response to light fields which can be subsequently exploited in diverse applications. Scaling down the size of nanorings holds promise in creating artificial magnetism at wavelengths matching the solar spectrum. Nanosized bioscaffolds can be utilized to tackle the challenge of size reduction of metallic rings owing to their miniature features as well as their well-known biomineralization capacity. Herein, we use the tobacco mosaic virus coat protein as a command surface to grow and assemble silver nanoparticles into sub-30 nm rings. The versatility of TMV allows the formation of both solid rings and rings consisting of discrete nanoparticles that are characterized by UV-vis and TEM. The pH-dependent coulombic surface map along with the annular geometry of the protein aggregate allow the generation of rings with or without a central nanoparticle. Our silver rings are believed to be the smallest to date, and they can offer a test material for existing theories on metallic nanorings of this heretofore unreached size scale.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app