Add like
Add dislike
Add to saved papers

Production of Hollow Bacterial Cellulose Microspheres Using Microfluidics to Form an Injectable Porous Scaffold for Wound Healing.

Bacterial cellulose (BC) is a biocompatible material with high purity and robust mechanical strength used to fabricate desirable scaffolds for 3D cell culture and wound healing. However, the chemical resistance of BC and its insolubility in the majority of solutions make it difficult to manipulate using standard chemical methods. In this study, a microfluidic process is developed to produce hollow BC microspheres with desirable internal structures and morphology. Microfluidics is used to generate a core-shell structured microparticle with an alginate core and agarose shell as a template to encapsulate Gluconacetobacter xylinus for long-term static culture. G. xylinus then secretes BC, which becomes entangled within the shell of the structured hydrogel microparticles and forms BC microspheres. The removal of the hydrogel template via thermal-chemical treatments yields robust BC microspheres exhibiting a hollow morphology. These hollow microspheres spontaneously assemble as functional units to form a novel injectable scaffold. In vitro, a highly porous scaffold is created to enable effective 3D cell culture with a high cell proliferation rate and better depth distribution. In vivo, this injectable scaffold facilitates tissue regeneration, resulting in rapid wound-healing in a Sprague Dawley rat skin model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app