Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Video-Audio Media
Add like
Add dislike
Add to saved papers

Surgical Approach for Middle Cerebral Artery Occlusion and Reperfusion Induced Stroke in Mice.

Stroke is a leading cause of death worldwide and continues to be one of the major causes of long-term adult disabilities. About 87% of strokes are ischemic in origin and occur in the territory of the middle cerebral artery (MCA). Currently the only Food and Drug Administration (FDA) approved drug for the treatment of this devastating disease is tissue plasminogen activator (tPA). However, tPA has a small therapeutic window for administration (3 - 6 hr), and is only effective in 4% of the patients who actually receive it. Current research focuses on understanding the pathophysiology of stroke in order to find potential therapeutic targets. Thus, reliable models are crucial, and the MCA occlusion (MCAo) model (also termed the intraluminal filament or suture model) is deemed to be the most clinically relevant surgical model of ischemic stroke, and is fairly non-invasive and easily reproducible. Typically the MCAo model is used with rodents, especially with mice due to all the genetic variations available for this species. Here we describe (and present in the video) how to successfully perform the MCAo model (with reperfusion) in mice to generate reliable and reproducible data.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app