JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
VIDEO-AUDIO MEDIA
Add like
Add dislike
Add to saved papers

Generation of Induced-pluripotent Stem Cells Using Fibroblast-like Synoviocytes Isolated from Joints of Rheumatoid Arthritis Patients.

Mature somatic cells can be reversed into a pluripotent stem cell-like state using a defined set of reprogramming factors. Numerous studies have generated induced-Pluripotent Stem Cells (iPSCs) from various somatic cell types by transducing four Yamanaka transcription factors: Oct4, Sox2, Klf4 and c-Myc. The study of iPSCs remains at the cutting edge of biological and clinical research. In particular, patient-specific iPSCs can be used as a pioneering tool for the study of disease pathobiology, since iPSCs can be induced from the tissue of any individual. Rheumatoid arthritis (RA) is a chronic inflammatory disease, classified by the destruction of cartilage and bone structure in the joint. Synovial hyperplasia is one of the major reasons or symptoms that lead to these results in RA. Fibroblast-like Synoviocytes (FLSs) are the main component cells in the hyperplastic synovium. FLSs in the joint limitlessly proliferate, eventually invading the adjacent cartilage and bone. Currently, the hyperplastic synovium can be removed only by a surgical procedure. The removed synovium is used for RA research as a material that reflects the inflammatory condition of the joint. As a major player in the pathogenesis of RA, FLSs can be used as a material to generate and investigate the iPSCs of RA patients. In this study, we used the FLSs of a RA patient to generate iPSCs. Using a lentiviral system, we discovered that FLSs can generate RA patient-specific iPSC. The iPSCs generated from FLSs can be further used as a tool to study the pathophysiology of RA in the future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app