Add like
Add dislike
Add to saved papers

Association of morphine-induced analgesic tolerance with changes in gene expression of GluN1 and MOR1 in rat spinal cord and midbrain.

OBJECTIVES: We aimed to examine association of gene expression of MOR1 and GluN1 at mRNA level in the lumbosacral cord and midbrain with morphine tolerance in male Wistar rats.

MATERIALS AND METHODS: Analgesic effects of morphine administrated intraperitoneally at doses of 0.1, 1, 5 and 10 mg/kg were examined using a hot plate test in rats with and without a history of 15 days morphine (10 mg/kg) treatment. Morphine-induced analgesic tolerance was also assessed on days 1, 5, 10 and 15 of chronic morphine injections. Two groups with history of 15 days injections of saline or morphine (10 mg/kg) were decapitated on day 15 and their lumbosacral cord and midbrain were dissected for evaluating MOR1 and GluN1 gene expression.

RESULTS: The results of the hot plate test showed that morphine (5 and 10 mg/kg) induced significant analgesia in naïve rats but its analgesic effects in rats receiving 15 days injections of morphine (10 mg/kg) was decreased, indicating tolerance to morphine analgesia. The results also showed that the GluN1 gene expression in tolerant rats was decreased by 71% in the lumbosacral cord but increased by 110 % in the midbrain compared to the control group. However, no significant change was observed for the MOR1 gene expression in both areas.

CONCLUSION: It can be concluded that tolerance following administration of morphine (10 mg/kg) for 15 days is associated with site specific changes in the GluN1 gene expression in the spinal cord and midbrain but the MOR1 gene expression is not affected.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app