Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Reduced Blood Cell Adhesion on Polypropylene Substrates through a Simple Surface Zwitterionization.

To overcome the thrombogenic reactions of hydrocarbon-based biomaterials in clinical blood treatment, we introduce a model study of surface zwitterionization of a polypropylene (PP) substrate using a set of well-defined copolymers for controlling the adhesion of blood cells in vitro. Random and block copolymers containing zwitterionic units of 2-methacryloyloxyethyl phosphorylcholine (MPC), [3-(methacryloylamino)propyl]dimethyl(3-sulfopropyl)ammonium hydroxide inner salt (SBAA), or nonionic units of 2-hydroxyethyl methacrylate (HEMA) with a controlled hydrophobic segment of 70% n-butyl methacrylate (BMA) units in these polymers were synthesized through reversible addition-fragmentation chain transfer polymerization. A systematic study of how zwitterionic and nonionic copolymer architectures associated with controlled chain orientation via hydration processes affect blood compatibility is reported. The surface wettability of PP substrates coated with the block copolymer with poly(MPC) (PMPC) segments was higher than that of the random copolymer poly(MPC-random-BMA). However, only the random copolymers with SBAA units demonstrate a higher surface wettability. The PP substrate coated with nonionic copolymers containing HEMA units showed relatively lower hydration capability associated with higher protein adsorption, platelet adhesion, and leukocyte attachment than those with zwitterionic copolymers. The random copolymer poly(SBAA-random-BMA) coated on the PP substrates exhibited resistance to cell adhesion in human whole blood at a level comparable to that of MPC copolymers. An ideal zwitterionic PP substrate could be obtained by coating it with a block copolymer composed of PMPC and poly(BMA) (PBMA) segments, PMPC-block-PBMA. The water contact angle decreased dramatically from approximately 100° on the original PP substrate to 11° within 30 s. The number of blood cells attached on PMPC-block-PBMA decreased significantly to less than 2.5% of that on original PP. These results prove that the rational design of zwitterionic polymers incorporated with a hydrophobic anchoring portion provides a promising approach to reduce blood cell adhesion and protein adsorption of hydrocarbon-based biomaterials applied in direct contact with human whole blood.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app