Add like
Add dislike
Add to saved papers

Liabilities Associated with the Formation of "Hard" Electrophiles in Reactive Metabolite Trapping Screens.

Soft electrophiles (e.g., epoxides, quinones, quinone-imines, quinone-methides, etc.) generated via the oxidative bioactivation of phenyl, phenolic, amino-, and alkylphenolic substituents can be trapped with nucleophiles of comparable softness (e.g., glutathione or cysteine) in reactive metabolite screens. In contrast, hard nucleophiles such as cyanide and amines are frequently utilized to trap hard electrophiles (e.g., iminiums and aldehydes) that result from the oxidative bioactivation of cyclic (or acylic) amines and primary alcohols. In some instances, soft sulfydryl nucleophiles have also been utilized to trap aldehydes to yield cyclized thiazolidine adducts. Case studies where hard electrophiles are thought to be responsible for cytochrome P450 inactivation, genotoxicity, and/or target organ toxicity in animals have been presented. The association of hard electrophiles with immune-mediated idiosyncratic adverse drug reactions is less clear given the paucity of available examples and the fact that several marketed drugs containing cyclic amine motifs can generate hard electrophiles via α-carbon ring oxidation. This perspective examines available data associating toxicity with the formation of hard electrophilic intermediates from small molecule drugs/drug candidates. Pragmatic risk mitigation strategies around unwarranted idiosyncratic toxicity risks with drug candidates that generate hard electrophiles are also discussed against the backdrop of marketed agents that possess analogous cyclic amine framework.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app