Add like
Add dislike
Add to saved papers

Metabolic Stress Induces Caspase-3 Mediated Degradation and Inactivation of Farnesyl and Geranylgeranyl Transferase Activities in Pancreatic β-Cells.

BACKGROUND/AIMS: At least 300 prenylated proteins are identified in the human genome; the majority of which partake in a variety of cellular processes including growth, differentiation, cytoskeletal organization/dynamics and vesicle trafficking. Aberrant prenylation of proteins is implicated in human pathologies including cancer; neurodegenerative diseases, retinitis pigmentosa, and premature ageing syndromes. Original observations from our laboratory have demonstrated that prenylation of proteins [small G-proteins and γ-subunits of trimeric G-proteins] is requisite for physiological insulin secretion. Herein, we assessed the impact of metabolic stress [gluco-, lipotoxicity and ER-stress] on the functional status of protein prenylation pathway in pancreatic β-cells.

METHODS: Farnesyltransferase [FTase] and geranylgeranyltransferase [GGTase] activities were quantified by radioisotopic methods. Caspase-3 activation and FTase/GGTase-α subunit degradation were determined by Western blotting.

RESULTS: We observed that metabolic stress activates caspase-3 and induces degradation of the common α-subunit of FTase and GGTase-I in INS-1 832/13 cells, normal rodent islets and human islets leading to functional defects [inactivation] in FTase and GGTase activities. Caspase-3 activation and FTase/GGTase-α degradation were also seen in islets from the Zucker diabetic fatty [ZDF] rat, a model for Type 2 diabetes. Consequential to defects in FTase/GGTase-α signaling, we observed significant accumulation of unprenylated proteins [Rap1] in β-cells exposed to glucotoxic conditions. These findings were replicated in β-cells following pharmacological inhibition of generation of prenylpyrophosphate substrates [Simvastatin] or catalytic activity of prenylating enzymes [GGTI-2147].

CONCLUSIONS: Our findings provide the first evidence to suggest that metabolic stress induced dysfunction of the islet β-cell may, in part, be due to defective protein prenylation signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app