Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

3D DNA Origami Cuboids as Monodisperse Patchy Nanoparticles for Switchable Hierarchical Self-Assembly.

Nano Letters 2016 December 15
The rational design of anisotropic interaction patterns is a key step for programming colloid and nanoparticle self-assembly and emergent functions. Herein, we demonstrate a concept for harnessing the capabilities of 3D DNA origami for extensive supracolloidal self-assembly and showcase its use for making truly monodisperse, patchy, divalent nanocuboids that can self-assemble into supracolloidal fibrils via programmable DNA hybridization. A change in the number of connector duplexes at the patches reveals that multivalency and cooperativity play crucial roles to enhance superstructure formation. We further show thermal and chemical switching of the superstructures as the first steps toward reconfigurable self-assemblies. This concept lays the groundwork for merging monodisperse 3D DNA origami, featuring programmable patchiness and interactions, with nanoparticle self-assembly.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app