Add like
Add dislike
Add to saved papers

Temperature Dependence of HeBr 2 Isomers' Stability through Rovibrational Multiconfiguration Time-Dependent Hartree Calculations.

The multiconfiguration time-dependent Hartree (MCTDH) method using a six-dimensional Hamiltonian that includes all rotational and vibrational degrees of freedom and an ab initio potential energy surface was employed to calculate the rovibronic states of the HeBr2 van der Waals complex. All rotational states of energies within 7 cm-1 with respect to the energy of the linear ground state were calculated without restriction of the total angular momentum. In total, we obtained 500 and 320 rotationally excited states of the ground vibrational T-shaped and linear isomers of the HeBr2 , respectively, and compared them with those predicted by the rigid rotor model. A thermodynamic model was then introduced to determine the relative stability of the two conformers as a function of the temperature. On the basis of the present results, the linear conformers were found to be energetically more stable than the T-shaped ones by 1.14 cm-1 at T = 0 K, whereas conversion from linear to T-shaped complexes was observed at temperatures above 2.87 K.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app