Add like
Add dislike
Add to saved papers

Component-Based Modelling for Scalable Smart City Systems Interoperability: A Case Study on Integrating Energy Demand Response Systems.

Sensors 2016 October 29
Smart city systems embrace major challenges associated with climate change, energy efficiency, mobility and future services by embedding the virtual space into a complex cyber-physical system. Those systems are constantly evolving and scaling up, involving a wide range of integration among users, devices, utilities, public services and also policies. Modelling such complex dynamic systems' architectures has always been essential for the development and application of techniques/tools to support design and deployment of integration of new components, as well as for the analysis, verification, simulation and testing to ensure trustworthiness. This article reports on the definition and implementation of a scalable component-based architecture that supports a cooperative energy demand response (DR) system coordinating energy usage between neighbouring households. The proposed architecture, called refinement of Cyber-Physical Component Systems (rCPCS), which extends the refinement calculus for component and object system (rCOS) modelling method, is implemented using Eclipse Extensible Coordination Tools (ECT), i.e., Reo coordination language. With rCPCS implementation in Reo, we specify the communication, synchronisation and co-operation amongst the heterogeneous components of the system assuring, by design scalability and the interoperability, correctness of component cooperation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app