Add like
Add dislike
Add to saved papers

A histochemical approach to glycan diversity in the urothelium of pig urinary bladder.

Intracellular glycans in the urothelium of urinary bladder of 10 adult male Landrace pigs were characterized in situ by immunohistochemical detection of Muc1 mucin by anti MUC1 from rabbit, conventional histochemical techniques (Periodic-Acid Schiff, Alcian Blue pH 2.5, High-Iron Diamine), and binding with 13 lectins (PNA, DBA, RCA-I, WGA, SBA, BSI-B4, ConA, AAA, UEA-I, LTA, LFA, MAA-II, SNA) combined with chemical and enzymatic pre-treatments (β-elimination, desulfation and neuraminidase) to gather reference data for this model animal. Muc1 mucin was detected in the secreting granules of superficial cells and the underlying layer of intermediate cells. The secreting granules in both intermediate cells and superficial cells were rich in carbohydrates, with the oligosaccharidic chains mostly O-linked to proteins. Glycoproteins were prevailing over glycosaminoglycans (GAGs). In both superficial and intermediate cells sulfated and/or sialylated glycans were present, sulfation decreasing in the deeper layers. Lectin-binding detected presence of terminal sialic acid linked mostly in α2,6 to GalNAc, Gal terminal or subterminal to sulfates, GalNAc, GlcNAc, and Fuc, mostly linked in α1,6, α1,3 α1,4 and α1,2 to GlcNAc or Gal, but not to lactosamine chains. Except for fucosylation, the oligosaccharidic chains in the glycoproteins of the urothelium of pig urinary bladder were similar to those linked to human MUC1, which is fundamental in cell adhesion and immunological processes in the urothelium. The co-distribution of Muc1 and saccharidic residues suggests that many of them are linked to the glycoprotein.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app