Add like
Add dislike
Add to saved papers

Computational Prediction of Protein Secondary Structure from Sequence.

Secondary structure of proteins refers to local and repetitive conformations, such as α-helices and β-strands, which occur in protein structures. Computational prediction of secondary structure from protein sequences has a long history with three generations of predictive methods. This unit summarizes several recent third-generation predictors. We discuss their inputs and outputs, availability, and predictive performance and explain how to perform and interpret their predictions. We cover methods for the prediction of the 3-class secondary structure states (helix, strand, and coil) as well as the 8-class secondary structure states. Recent empirical assessments and our small-scale analysis reveal that these predictions are characterized by high levels of accuracy, between 70% and 80%. We emphasize that modern predictors are available to end users in the form of convenient-to-use Web servers and stand-alone software. © 2016 by John Wiley & Sons, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app