Add like
Add dislike
Add to saved papers

D2-like receptors in the descending dopaminergic pathway are not involved in the decreased postoperative nociceptive threshold induced by plantar incision in adult rats.

BACKGROUND: Approximately half of all patients who undergo surgery develop postoperative pain, the mechanisms of which are not well understood by anesthesiologists. D2-like receptors in the descending dopaminergic pathway play an important role in regulation of pain transmission in the spinal cord. Impairment of inhibitory neurons in the spinal cord is suggested as part of the mechanism for neuropathic pain, which is one component of postoperative pain. The purpose of this study was to investigate whether impairment of D2-like receptors in the descending dopaminergic pathway in the spinal cord is involved in the decreased postoperative nociceptive threshold in rats.

METHODS: Male Sprague-Dawley rats (250-300 g) were anesthetized with sevoflurane and an intrathecal (IT) catheter was implanted. Six days later, a plantar incision was made. On the following day, saline, a D2-like receptor agonist (quinpirole), or a D2-like receptor antagonist (sulpiride) was administered intrathecally. Thermal and mechanical nociceptive responses were assessed by exposure to infrared radiant heat and the von Frey filament test before and after plantar incision.

RESULTS: Plantar incision decreased both thermal latency and the mechanical nociceptive threshold. IT administration of quinpirole inhibited the nociceptive responses induced by plantar incision, but sulpiride had no effect.

CONCLUSION: A D2-like receptor agonist had antinociceptive effects on the hypersensitivity response triggered by a surgical incision, but a D2-like receptor antagonist had no effect on this response. These results suggest that impairment and/or modification of D2-like receptors in the descending dopaminergic pathway in the spinal cord is not involved in the postoperative decrease in nociceptive threshold.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app