Add like
Add dislike
Add to saved papers

Intracellular TRPA1 mediates Ca2+ release from lysosomes in dorsal root ganglion neurons.

Journal of Cell Biology 2016 November 8
Transient receptor potential A1 (TRPA1) is a nonselective cation channel implicated in thermosensation and inflammatory pain. In this study, we show that TRPA1 (activated by allyl isothiocyanate, acrolein, and 4-hydroxynonenal) elevates the intracellular Ca(2+) concentration ([Ca(2+)]i) in dorsal root ganglion (DRG) neurons in the presence and absence of extracellular Ca(2+) Pharmacological and immunocytochemical analyses revealed the presence of TRPA1 channels both on the plasma membrane and in endolysosomes. Confocal line-scan imaging demonstrated Ca(2+) signals elicited from individual endolysosomes ("lysosome Ca(2+) sparks") by TRPA1 activation. In physiological solutions, the TRPA1-mediated endolysosomal Ca(2+) release contributed to ∼40% of the overall [Ca(2+)]i rise and directly triggered vesicle exocytosis and calcitonin gene-related peptide release, which greatly enhanced the excitability of DRG neurons. Thus, in addition to working via Ca(2+) influx, TRPA1 channels trigger vesicle release in sensory neurons by releasing Ca(2+) from lysosome-like organelles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app