Add like
Add dislike
Add to saved papers

The Influenza Virus Protein PB1-F2 Increases Viral Pathogenesis through Neutrophil Recruitment and NK Cells Inhibition.

The influenza A virus (IAV) PB1-F2 protein is a virulence factor contributing to the pathogenesis observed during IAV infections in mammals. In this study, using a mouse model, we compared the host response associated with PB1-F2 with an early transcriptomic signature that was previously associated with neutrophils and consecutively fatal IAV infections. This allowed us to show that PB1-F2 is partly involved in neutrophil-related mechanisms leading to death. Using neutropenic mice, we confirmed that the harmful effect of PB1-F2 is due to an excessive inflammation mediated by an increased neutrophil mobilization. We identified the downstream effects of this PB1-F2-exacerbated neutrophil recruitment. PB1-F2 had no impact on the lymphocyte recruitment in the airways at day 8 pi. However, functional genomics analysis and flow cytometry in broncho-alveolar lavages at 4 days pi revealed that PB1-F2 induced a NK cells deficiency. Thus, our results identify PB1-F2 as an important immune disruptive factor during the IAV infection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app