JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The delayed strengthening of synaptic connectivity in the amygdala depends on NMDA receptor activation during acute stress.

There is growing evidence that stress leads to contrasting patterns of structural plasticity in the hippocampus and amygdala, two brain areas implicated in the cognitive and affective symptoms of stress-related psychiatric disorders. Acute stress has been shown to trigger a delayed increase in the density of dendritic spines in the basolateral amygdala (BLA) of rodents. However, the physiological correlates of this delayed spinogenesis in the BLA remain unexplored. Furthermore, NMDA receptors (NMDARs) have been known to underlie chronic stress-induced structural plasticity in the hippocampus, but nothing is known about the role of these receptors in the delayed spinogenesis, and its physiological consequences, in the BLA following acute stress. Here, using whole-cell recordings in rat brain slices, we find that a single exposure to 2-h immobilization stress enhances the frequency, but not amplitude, of miniature excitatory postsynaptic currents (mEPSCs) recorded from principal neurons in the BLA 10 days later. This was also accompanied by faster use-dependent block of NMDA receptor currents during repeated stimulation of thalamic inputs to the BLA, which is indicative of higher presynaptic release probability at these inputs 10 days later. Furthermore, targeted in vivo infusion of the NMDAR-antagonist APV into the BLA during the acute stress prevents the increase in mEPSC frequency and spine density 10 days later. Together, these results identify a role for NMDARs during acute stress in both the physiological and morphological strengthening of synaptic connectivity in the BLA in a delayed fashion. These findings also raise the possibility that activation of NMDA receptors during stress may serve as a common molecular mechanism despite the divergent patterns of plasticity that eventually emerge after stress in the amygdala and hippocampus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app