Add like
Add dislike
Add to saved papers

Nuclear constriction segregates mobile nuclear proteins away from chromatin.

As a cell squeezes its nucleus through adjacent tissue, penetrates a basement membrane, or enters a small blood capillary, chromatin density and nuclear factors could in principle be physically perturbed. Here, in cancer cell migration through rigid micropores and in passive pulling into micropipettes, local compaction of chromatin is observed coincident with depletion of mobile factors. Heterochromatin/euchromatin was previously estimated from molecular mobility measurements to occupy a volume fraction f of roughly two-thirds of the nuclear volume, but based on the relative intensity of DNA and histones in several cancer cell lines drawn into narrow constrictions, f can easily increase locally to nearly 100%. By contrast, mobile proteins in the nucleus, including a dozen that function as DNA repair proteins (e.g., BRCA1, 53BP1) or nucleases (e.g., Cas9, FokI), are depleted within the constriction, approaching 0%. Such losses-compounded by the occasional rupture of the nuclear envelope-can have important functional consequences. Studies of a nuclease that targets a locus in chromosome-1 indeed show that constricted migration delays DNA damage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app