Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Discrete TCR Binding Kinetics Control Invariant NKT Cell Selection and Central Priming.

Journal of Immunology 2016 November 16
Invariant NKT (iNKT) cells develop and differentiate in the thymus, segregating into iNKT1/2/17 subsets akin to Th1/2/17 classical CD4+ T cells; however, iNKT TCRs recognize Ags in a fundamentally different way. How the biophysical parameters of iNKT TCRs influence signal strength in vivo and how such signals affect the development and differentiation of these cells are unknown. In this study, we manipulated TCRs in vivo to generate clonotypic iNKT cells using TCR retrogenic chimeras. We report that the biophysical properties of CD1d-lipid-TCR interactions differentially impacted the development and effector differentiation of iNKT cells. Whereas selection efficiency strongly correlated with TCR avidity, TCR signaling, cell-cell conjugate formation, and iNKT effector differentiation correlated with the half-life of CD1d-lipid-TCR interactions. TCR binding properties, however, did not modulate Ag-induced iNKT cytokine production. Our work establishes that discrete TCR interaction kinetics influence iNKT cell development and central priming.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app