Add like
Add dislike
Add to saved papers

Symmetry-Dependent Intramolecular Charge Transfer Dynamics of Pyrene Derivatives Investigated by Two-Photon Excitation.

Intramolecular charge transfer (ICT) processes in two-photon (TP) allowed states were investigated using three pyrene derivatives N1, N2C, and N2T, which have different molecular symmetry depending on the number and position of N,N-dimethylaniline donating substituents. On the basis of steady-state and nondegenerate two-photon absorption measurements, we investigated femtosecond transient absorption (TA) spectra by one-photon (OPE) and two-photon excitation (TPE). In the analysis of TA spectra, we discovered that the transfer rate from locally excited state to the ICT state by TPE is slower than that by OPE, indicating that the energy barrier between the TP and ICT states is higher than that between the one-photon (OP) allowed and ICT states. Furthermore, we demonstrated that ICT dynamics in a TP state are affected by molecular symmetry through the disappearance of stimulated emission from the locally excited state in the TA spectra of N2T obtained by TPE. We believe that our findings will provide fundamental information for a better understanding of excited-state ICT dynamics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app