Add like
Add dislike
Add to saved papers

Chemical Inhibition Method to Synthesize Highly Crystalline Prussian Blue Analogs for Sodium-Ion Battery Cathodes.

The nucleation rate plays a critical role in the synthesis of Prussian blue analogs. Rapid precipitation may lead to a large number of vacancies and a large amount of interstitial water in the material, resulting in poor electrochemical performance in batteries. Hence, sodium citrate is used to compete with [Fe(CN)6 ]4- to slow down the coordination rates of Ni2+ and Mn2+ ions with ferrous cyanide ions. The feasibility of the experiment is also confirmed by theoretical analysis. Benefiting from stable crystal structure and the removal of interstitial water, the as-prepared Na2 Nix Mny Fe(CN)6 sample exhibits a high reversible capacity of 150 mA h g-1 . In addition, a high rate performance of 77 mA h g-1 is achieved at a current density of 1600 mA g-1 . Most noteworthy, the Coulombic efficiency and specific capacity gradually increase in the first few cycles, which can be ascribed to the formation of a passivation layer on the surface of the electrode. Continuous testing in an electrolyte solution of 1 M NaPF6 dissolved in sulfone reveals that the presence of a passivation film is very important for the stability of the electrode.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app