Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Total variation-based method for generation of intravoxel incoherent motion parametric images in MRI.

PURPOSE: Total variation (TV) method has been used widely for image restoration and reconstruction. In this work, we propose a TV-based algorithm for parametric image generation in intravoxel incoherent motion (IVIM) diffusion-weighted magnetic resonance imaging (DW-MRI).

METHODS: We used simulated and real data to investigate whether the proposed TV-based method can provide reliable parametric images. Parametric images of IVIM parameters including perfusion fraction (PF), diffusion coefficient (D), and pseudo-diffusion coefficient (D*) were estimated using DW-MRI data and TV through fitting the IVIM model. The Levenberg-Marquardt (LM) method, which has often been used in the context of IVIM analysis, was employed as the standard method for comparison of the resulting parametric images.

RESULTS: The simulation results show that the proposed method outperforms the LM algorithm in terms of precision, providing a 40-81%, 90-93%, and 68-84% improvement for PF, D and D*, respectively, at signal-to-noise ratio (SNR) of 30. For real data, the proposed method showed an average five-fold, three-fold, and four-fold improvement in the SNR for PF, D and D*, respectively.

CONCLUSION: We introduced the use of TV to produce parametric images, and demonstrated that the proposed TV-based method is effective in improving the parametric image quality. Magn Reson Med 78:1383-1391, 2017. © 2016 International Society for Magnetic Resonance in Medicine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app