Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

High efficiency radiofrequency power amplifier module for parallel transmit arrays at 3 Tesla.

PURPOSE: The purpose of this study is to develop an in-bore radiofrequency (RF) power amplifier (RFPA) module with high power efficiency and density for use in parallel transmit (pTX) arrays at 3 Tesla.

METHODS: The modules use a combination of current mode class D, class S, and class E amplifiers based on enhancement-mode gallium nitride-on-silicon field-effect transistors. Together the amplifiers implement envelope elimination and restoration to achieve amplitude modulation with high efficiency over a wide operating range. The static nonlinearity and power efficiency of the module were measured using pulsed RF measurements over a 37 dB dynamic range. Thermal performance was also measured with and without forced convection cooling.

RESULTS: The modules produces peak RF power up to 130 W with an overall efficiency of 85%. When producing 100 W RF pulses at a duty cycle of 10%, maximum junction temperatures did not exceed 80 °C, even without the use of heatsinks or forced convection.

CONCLUSION: The small size and low cost of the modules promise lower cost implementation of pTX systems compared with linear RFPAs located remotely. Further work must be done on control of the RF output in the presence of nonlinearities and coupling. Magn Reson Med 78:1589-1598, 2017. © 2016 International Society for Magnetic Resonance in Medicine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app