JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Full rate constant matrix contraction method for obtaining branching ratio of unimolecular decomposition.

The branching ratio of unimolecular decomposition can be evaluated by solving the rate equations. Recent advances in automated reaction path search methods have enabled efficient construction of the rate equations based on quantum chemical calculations. However, it is still difficult to solve the rate equations composed of hundreds or more elementary steps. This problem is especially serious when elementary steps that occur in highly different timescales coexist. In this article, we introduce an efficient approach to obtain the branching ratio from a given set of rate equations. It has been derived from a recently proposed rate constant matrix contraction (RCMC) method, and termed full-RCMC (f-RCMC). The f-RCMC gives the branching ratio without solving the rate equations. Its performance was tested numerically for unimolecular decomposition of C3 H5 and C4 H5 . Branching ratios obtained by the f-RCMC precisely reproduced the values obtained by numerically solving the rate equations. It took about 95 h to solve the rate equations of C4 H5 consisting of 234 elementary steps. In contrast, the f-RCMC gave the branching ratio in less than 1 s. The f-RCMC would thus be an efficient alternative of the conventional kinetic simulation approach. © 2016 Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app