Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Quorum Quenching of Nitrobacter winogradskyi Suggests that Quorum Sensing Regulates Fluxes of Nitrogen Oxide(s) during Nitrification.

MBio 2016 October 26
Quorum sensing (QS) is a widespread process in bacteria used to coordinate gene expression with cell density, diffusion dynamics, and spatial distribution through the production of diffusible chemical signals. To date, most studies on QS have focused on model bacteria that are amenable to genetic manipulation and capable of high growth rates, but many environmentally important bacteria have been overlooked. For example, representatives of proteobacteria that participate in nitrification, the aerobic oxidation of ammonia to nitrate via nitrite, produce QS signals called acyl-homoserine lactones (AHLs). Nitrification emits nitrogen oxide gases (NO, NO2 , and N2 O), which are potentially hazardous compounds that contribute to global warming. Despite considerable interest in nitrification, the purpose of QS in the physiology/ecology of nitrifying bacteria is poorly understood. Through a quorum quenching approach, we investigated the role of QS in a well-studied AHL-producing nitrite oxidizer, Nitrobacter winogradskyi We added a recombinant AiiA lactonase to N. winogradskyi cultures to degrade AHLs to prevent their accumulation and to induce a QS-negative phenotype and then used mRNA sequencing (mRNA-Seq) to identify putative QS-controlled genes. Our transcriptome analysis showed that expression of nirK and nirK cluster genes (ncgABC) increased up to 19.9-fold under QS-proficient conditions (minus active lactonase). These data led to us to query if QS influenced nitrogen oxide gas fluxes in N. winogradskyi Production and consumption of NOx increased and production of N2 O decreased under QS-proficient conditions. Quorum quenching transcriptome approaches have broad potential to identify QS-controlled genes and phenotypes in organisms that are not genetically tractable.

IMPORTANCE: Bacterial cell-cell signaling, or quorum sensing (QS), is a method of bacterial communication and gene regulation that is well studied in bacteria. However, little is known about the purpose of QS in many environmentally important bacteria. Here, we demonstrate quorum quenching coupled with mRNA-Seq to identify QS-controlled genes and phenotypes in Nitrobacter winogradskyi, a nitrite-oxidizing bacterium. Nitrite oxidizers play an important role in the nitrogen cycle though their participation in nitrification, the aerobic oxidation of ammonia to nitrate via nitrite. Our quorum quenching approach revealed that QS influences production and consumption of environmentally important nitrogen oxide gases (NO, NO2 , and N2 O) in N. winogradskyi This study demonstrated a novel technique for studying QS in difficult-to-work-with microorganisms and showed that nitrite oxidizers might also contribute to nitrification-dependent production of nitrogen oxide gases that contribute to global warming.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app