Add like
Add dislike
Add to saved papers

Human exceptional longevity: transcriptome from centenarians is distinct from septuagenarians and reveals a role of Bcl-xL in successful aging.

Aging 2016 October 29
Centenarians not only enjoy an extraordinary aging, but also show a compression of morbidity. Using functional transcriptomic analysis of peripheral blood mononuclear cells (PMBC) we identified 1721 mRNAs differentially expressed by centenarians when compared with septuagenarians and young people. Sub-network analysis led us to identify Bcl-xL as an important gene up-regulated in centenarians. It is involved in the control of apoptosis, cellular damage protection and also in modulation of immune response, all associated to healthy aging. Indeed, centenarians display lower plasma cytochrome C levels, higher mitochondrial membrane potential and also less cellular damage accumulation than septuagenarians. Leukocyte chemotaxis and NK cell activity are significantly impaired in septuagenarians compared with young people whereas centenarians maintain them. To further ascertain the functional role of Bcl-xL in cellular aging, we found that lymphocytes from septuagenarians transduced with Bcl-xL display a reduction in senescent-related markers. Finally, to demonstrate the role of Bcl-xL in longevity at the organism level, C. elegans bearing a gain of function mutation in the Bcl-xL ortholog ced-9 , showed a significant increase in mean and maximal life span. These results show that mRNA expression in centenarians is unique and reveals that Bcl-xL plays an important role in exceptional aging.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app