Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Middle-ear function in the chinchilla: Circuit models and comparison with other mammalian species.

The middle ear efficiently transmits sound from the ear canal into the inner ear through a broad range of frequencies. Thus, understanding middle-ear transmission characteristics is essential in the study of hearing mechanics. Two models of the chinchilla middle ear are presented. In the first model, the middle ear is modeled as a lumped parameter system with elements that represent the ossicular chain and the middle-ear cavity. Parameters of this model are fit using available experimental data of two-port transmission matrix parameters. In an effort to improve agreement between model simulations and the phase of published experimental measurements for the forward pressure transfer function at high frequencies, a second model in which a lossless transmission line model of the tympanic membrane is appended to the original model is proposed. Two-port transmission matrix parameter results from this second model were compared with results from previously developed models of the guinea pig, cat, and human middle ears. Model results and published experimental data for the two-port transmission matrix parameters are found to be qualitatively similar between species. Quantitative differences in the two-port transmission matrix parameters suggest that the ossicular chains of chinchillas, cats, and guinea pigs are less flexible than in humans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app