Add like
Add dislike
Add to saved papers

Dopamine beta-hydroxylase participate in the immunoendocrine responses of hypothermal stressed white shrimp, Litopenaeus vannamei.

Dopamine beta-hydroxylase (DBH) plays a critical role in catecholamine (CA) synthesis of neuroendocrine regulatory network, and is suggested to be involved in the immunoendocrine responses of invertebrate against bacterial challenge. DBH has been identified in white shrimp, Litopenaeus vannamei, and further investigation on its potential function was conducted after hypothermal stress, pharmaceutical inhibition and gene silencing in the present study. Cloned DBH L. vannamei (LvDBH), belonging to the Copper type II, ascorbate-dependent monooxygenases, was characterized by a DOMON domain, a Cu2_monooxygen domain and three glycosylation sites, and its expression was abundant in thoracic ganglia and haemocytes determined by quantitative real-time PCR. The effects of hypothermal stress showed that LvDBH expression in thoracic ganglia, haemocytes and hepatopancreas as well as the DBH contents in haemocytes and dopamine (DA) and norepinephrine (NE) levels in haemolymph are obviously up-regulated. L. vannamei receiving disulfiram for 30-120 min revealed the inhibition of DBH and NE contents in haemocytes and haemolymph respectively, but high level of DA in haemolymph was noticed. Besides, a significant decrease of LvDBH expression in thoracic ganglia, haemocytes and hepatopancreas were also observed. Subsequently, LvDBH expression was successfully silenced in thoracic ganglia, haemocytes and hepatopancreas of shrimp that received LvDBH-dsRNA for 3 days, and meanwhile, a decrease of DBH contents in haemocytes accompanied by decreased levels of NE and DA in haemolymph were also observed. These results indicate that LvDBH possesses the functional domains responsible for CAs synthesis, and therefore, inhibiting DBH contents in haemocytes by disulfiram and by LvDBH-dsRNA resulted in the impaired synthesis of NE from DA in haemolymph. These also suggest that the increased release of DA and NE in haemolymph for potential modulation of physiological or immunological responses is the consequence of the upregulated LvDBH expression and DBH contents in L. vannamei exposed to hypothermal stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app