Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Tethered polymer nanoassemblies for sustained carfilzomib release and prolonged suppression of proteasome activity.

AIM: Proteasome inhibitors, such as carfilzomib (CFZ), have shown potential to treat various types of cancers in preclinical models, but clinical applications are limited likely due to formulation and delivery issues. Results & methodology: Tethered polymer nanoassemblies (TNAs) were synthesized by tethering hydrophilic polymers and hydrophobic groups to charged polymer scaffolds, and then end-capping remaining amines on scaffold. Drug entrapment and drug release half-lives increased as charge was removed from scaffold. TNAs with sustained CFZ release maintained drug efficacy after preincubation and increased duration of proteasome inhibition in cancer cells compared with free CFZ.

CONCLUSION: TNAs fine-tuned CFZ release as charge was removed from polymer scaffold, which allowed for sustained proteasome inhibition in cancer cells and potentially enhanced anticancer efficacy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app