Add like
Add dislike
Add to saved papers

A Flexible and Thin Graphene/Silver Nanowires/Polymer Hybrid Transparent Electrode for Optoelectronic Devices.

A typical thin and fully flexible hybrid electrode was developed by integrating the encapsulation of silver nanowires (AgNWs) network between a monolayer graphene and polymer film as a sandwich structure. Compared with the reported flexible electrodes based on PET or PEN substrate, this unique electrode exhibits the superior optoelectronic characteristics (sheet resistance of 8.06 Ω/□ at 88.3% light transmittance). Meanwhile, the specific up-to-bottom fabrication process could achieve the superflat surface (RMS = 2.58 nm), superthin thickness (∼8 μm thickness), high mechanical robustness, and lightweight. In addition, the strong corrosion resistance and stability for the hybrid electrode were proved. With these advantages, we employ this electrode to fabricate the simple flexible organic light-emitting device (OLED) and perovskite solar cell device (PSC), which exhibit the considerable performance (best PCE of OLED = 2.11 cd/A2 ; best PCE of PSC = 10.419%). All the characteristics of the unique hybrid electrode demonstrate its potential as a high-performance transparent electrode candidate for flexible optoelectronics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app