Add like
Add dislike
Add to saved papers

Neurocomputational Models of Interval and Pattern Timing.

Most of the computations and tasks performed by the brain require the ability to tell time, and process and generate temporal patterns. Thus, there is a diverse set of neural mechanisms in place to allow the brain to tell time across a wide range of scales: from interaural delays on the order of microseconds to circadian rhythms and beyond. Temporal processing is most sophisticated on the scale of tens of milliseconds to a few seconds, because it is within this range that the brain must recognize and produce complex temporal patterns-such as those that characterize speech and music. Most models of timing, however, have focused primarily on simple intervals and durations, thus it is not clear whether they will generalize to complex pattern-based temporal tasks. Here, we review neurobiologically based models of timing in the subsecond range, focusing on whether they generalize to tasks that require placing consecutive intervals in the context of an overall pattern, that is, pattern timing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app