JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

An Escherichia coli-Based Assay to Assess the Function of Recombinant Human Hemichannels.

SLAS Discovery 2017 Februrary
Connexins form the gap junctional channels that mediate cell-to-cell communication, and also form hemichannels present at the plasma membrane. Hemichannels are permeable to small hydrophilic compounds, including molecules involved in autocrine and paracrine signaling. An abnormal hemichannel opening causes or contributes to cell damage in common human disorders (e.g., cardiac infarct, cerebrovascular accidents, deafness, skin diseases, and cataracts) and is therefore a potential pharmacological target. The discovery of useful hemichannels inhibitors has been hampered in part by the lack of suitable high-throughput functional assays. Here, we developed and characterized an assay useful to assess the function of hemichannels formed by human connexins expressed in a genetically modified Escherichia coli strain. The LB2003 cells, devoid of three key K+ uptake transport mechanisms, cannot grow in low-[K+ ] medium, but expression of Cx26, Cx43, or Cx46 rescues their growth defect (growth complementation). We developed a protocol for a simple, inexpensive, easily scalable, reproducible, and sensitive assay that should be useful for the discovery of new and better hemichannel inhibitors based on the analysis of small-compound libraries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app