Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Effects of sclerostin antibodies in animal models of osteoporosis.

Bone 2017 March
There is an unmet need for therapies that can restore bone strength and reduce fracture risk among patients at high risk of osteoporotic fracture. To address this need, bone-forming therapies that increase osteoblast activity are required to help restore bone structure and strength. Sclerostin is now recognized as a target for osteoporosis therapy. Sclerostin is predominantly secreted by the osteocyte and acts as an extracellular inhibitor of canonical Wnt signaling by binding to the receptors lipoprotein receptor-related protein-4, 5 and 6. Monoclonal antibodies to sclerostin (Scl-Ab) have been used in both clinical and in preclinical studies of osteoporosis with beneficial outcomes for bone density, structure, strength and fracture risk reduction. In this review paper, we summarize the current literature describing the effects of Scl-Ab in animal models of osteoporosis. In addition, we report new pharmacologic data from three animal studies of Scl-Ab: 1) a 12-month study evaluating bone quality in ovariectomized (OVX) rats; 2) a 6-month study evaluating bone structure and strength in adolescent cynomolgus monkeys; and 3) the effects of transition from Scl-Ab to vehicle or the RANKL inhibitor osteoprotegerin-Fc in OVX rats. Together, these results demonstrate that inhibition of sclerostin by Scl-Ab increased bone formation, and decreased bone resorption, leading to improved bone structure, bone mass and bone strength while maintaining bone quality in multiple animal models of osteoporosis. Further, gains in bone mass induced by Scl-Ab treatment were preserved by antiresorptive agents such as a RANKL inhibitor as a follow-on therapy. The bone-forming effects of Scl-Ab were unaffected by pre- or co-treatment with a bisphosphonate, and were restored following a treatment-free period after initial dosing. These data support the clinical development of Scl-Ab for treatment of conditions with low bone mass such as postmenopausal and male osteoporosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app