Add like
Add dislike
Add to saved papers

Innovative approach for recycling phosphorous from agro-wastewaters using water treatment residuals (WTR).

Chemosphere 2017 Februrary
Phosphorus capture from polluting streams and its re-use using industrial byproducts has the potential to also reduce environmental threats. An innovative approach was developed for P removal from soil leachate and dairy wastewater using Al-based water treatment residuals (Al-WTR) to create an organic-Al-WTR composite (Al/O-WTR), potentially capable of serving as a P fertilizer source. Al-WTR was mixed with either soil leachate, or with dairy wastewater, both of which contained elevated P concentrations (e.g., 7.6-43.5 mg SRP L(-1)). The Al-WTR removed ∼95% inorganic P, above 80% organic P, and over 60% dissolved organic carbon (DOC) from the waste streams. P removal was correlated with P concentration in the waste streams and was consistent with an increase in Al/O-WTR P content as determined by X-ray fluorescence (XRF) and surface analysis using scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS). Organic C was a major constituent in the original Al-WTR (31.4%) and increased by 1% in the Al/O-WTRs. Organic C accumulation on particles surfaces possibly enhanced weak P bonding. Desorption experiments indicated an initial and substantial P release (30 mg SRP kg(-1) Al/O-WTR), followed by relatively constant low P solubility (ca. 10 mg kg(-1)). Organic C was continuously released to the solution (over 8000 mg kg(-1)), concomitantly with Ca and other electrolytes, possibly indicating dissolution from inner pores, accounting for the highly porous nature of the Al-WTR, evident by SEM images. The potential of P-loading on Al/O-WTR to promote P recycling should be further studied.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app