Add like
Add dislike
Add to saved papers

Coordination Chemistry and f-Element Complexation by Diethylenetriamine-N,N″-bis(acetylglycine)-N,N',N″-triacetic Acid.

Inorganic Chemistry 2016 November 8
Potentiometric and spectroscopic techniques were used to evaluate the coordination behavior and thermodynamic features of trivalent f-element complexation by diethylenetriamine-N,N″-bis(acetylglycine)-N,N',N″-triacetic acid (DTTA-DAG) and its di(acetylglycine ethyl ester) analogue [diethylenetriamine-N,N″-bis(acetylglycine ethyl ester)-N,N',N″-triacetic acid (DTTA-DAGEE)]. Protonation constants and stability constants of trivalent lanthanide complexes (except Pm3+ ) were determined by potentiometry. Six protonation sites and three metal-ligand complexes [ML2- , MHL- , and MH2 L(aq)] were quantified for DTTA-DAG. Four protonation sites and one metal-ligand complex [ML(aq)] were observed for DTTA-DAGEE, consistent with the presence of two ester groups. Absorption spectroscopy was utilized to measure the stability constants for complexation of trivalent neodymium and americium by DTTA-DAG and trivalent neodymium by DTTA-DAGEE. The coordination environment of trivalent europium in the presence of DTTA-DAG was investigated at various acidities by luminescence lifetime measurements. Decay constants indicate one water molecule in the inner coordination sphere across the 1.0 < pH < 5.5 range, presumably due to octadentate coordination by DTTA-DAG. A trans-lanthanide pattern of complex stabilities for DTTA-DAG was found to be analogous to that observed for DTPA, with a ∼106 reduction of the complex stability. The lessened strength of complexation, relative to DTPA, was attributed to significant reduction of the total ligand basicity for DTTA-DAG due to the electronic influence of amide functionalization. When DTTA-DAG is used as an aqueous holdback complexant in liquid-liquid distribution experiments, the preferential coordination of Am3+ in the aqueous environment offers efficient An/Ln differentiation. The separation extends to pH 2 conditions, where the kinetics of phase transfer in such liquid-liquid systems are aided by the acid-catalyzed dissociation of a metal/aminopolycarboxylate complex.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app