JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Lifetime regular exercise affects the incident of different arrhythmias and improves organismal health in aging female Drosophila melanogaster.

Biogerontology 2017 Februrary
We used Drosophila melanogaster as an animal model system to study the impact of exercise training initiated early in life on cardiac function using a well-established model of inherent myogenic properties of the heart and discussed the changes on myosin, a myocardial contractile protein. We also explored the effect of early physical exercise on organismal aging by analyzing the wake-sleep pattern using a Drosophila activity monitor system. We found that a variety of arrhythmias are part of the heart spectrum in old flies after a lifetime of physical exercise as evidenced by reducing the incidence of fibrillations and increasing the occurrence of bradycardias. Maintenance of myocardial myosin levels may be an underlying contributor to these exercise-induced improvements in cardiac function at an advanced age. Moreover, we found that exercise training resulted in improved sleep quality by ameliorating age-related sleep inefficiency, fragmentation and sleep consolidation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app