Add like
Add dislike
Add to saved papers

Metabolic and regulatory responses involved in cold acclimation in Atlantic killifish, Fundulus heteroclitus.

Ectotherms often respond to prolonged cold exposure by increasing mitochondrial capacity via elevated mitochondrial volume density [VV (mit,f)]. In fish, higher VV (mit,f) is typically associated with increased expression of nuclear respiratory factor 1 (Nrf1), a transcription factor that induces expression of nuclear-encoded respiratory genes. To examine if nrf1 expression or the expression of other genes that regulate mitochondrial biogenesis contribute to changes in whole-organism metabolic rate during cold acclimation, we examined the time course of changes in the expression of these genes and in metabolic rate in Atlantic killifish, Fundulus heteroclitus. Cold acclimation rapidly decreased metabolic rate, but increased the expression of nrf1 more gradually, with a time course that depended on how rapidly the fish were transitioned to low temperature. Cold-induced nrf1 expression was not associated with increases in biochemical indicators of mitochondrial respiratory capacity, suggesting that cold-induced mitochondrial biogenesis may occur without increases in oxidative capacity in this species. These observations imply that changes in nrf1 expression and metabolic rate due to cold acclimation occur through different physiological mechanisms, and that increases in VV (mit,f) are likely not directly related to changes in metabolic rate with cold acclimation in this species. However, nrf1 expression differed between northern and southern killifish subspecies regardless of acclimation temperature, consistent with observed differences in metabolic rate and VV (mit,f) at 5 °C between these subspecies. Taken together, these results reveal substantial complexity in the regulation of VV (mit,f) and mitochondrial capacity with temperature in fish and the relationship of these parameters to metabolic rate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app