Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Fast X-ray microfluorescence imaging with submicrometer-resolution integrating a Maia detector at beamline P06 at PETRA III.

The high brilliance of third-generation synchrotron sources increases the demand for faster detectors to utilize the available flux. The Maia detector is an advanced imaging scheme for energy-dispersive detection realising dwell times per image-pixel as low as 50 µs and count rates higher than 10 × 106  s-1 . In this article the integration of such a Maia detector in the Microprobe setup of beamline P06 at the storage ring PETRA III at the Deutsches Elektronen-Synchrotron (DESY) in Hamburg, Germany, is described. The analytical performance of the complete system in terms of rate-dependent energy resolution, scanning-speed-dependent spatial resolution and lower limits of detection is characterized. The potential of the Maia-based setup is demonstrated by key applications from materials science and chemistry, as well as environmental science with geological applications and biological questions that have been investigated at the P06 beamline.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app