JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Rapid fabrication of dense 45S5 Bioglass ® compacts through spark plasma sintering and evaluation of their in vitro biological properties.

Biomedical Materials 2016 October 28
It is challenging to obtain dense 45S5 Bioglass® (45S5) with controlled crystallinity and satisfactory mechanical properties by conventional sintering processes due to its fast crystallization above the first glass transition temperature. Spark plasma sintering (SPS) has stood out in this respect by virtue of its capability to provide fast heating and densification rates. However, there have been insufficient investigations into the in vitro biological properties of 45S5 compacts obtained by SPS. In this study, we report the fabrication of fully densified 45S5 pellets in the temperature range of 500 °C-600 °C through a rapid SPS process (sintering for 3 min) as well as the assessment of the influence of sintering temperature and aqueous aging on the biological properties of sintered pellets with L929 and MG63 cells. The cell culture results showed that both extended ageing and a lower SPS temperature in the 500-600 °C range could generally lead to faster cell proliferation and higher cell viability. The former was possibly caused by the slower alkalization of the media during cell culture, and the latter may have resulted from the release of more Ca and Si ions. The pellet sintered at 550 °C without aqueous aging led to the highest ALP activity in MG63 cells, which may be attributed to the high interfacial pH at the pellet surface and the leaching of more Si ions. Therefore, dense 45S5 compacts with mild crystallinity consolidated by SPS at 550 °C is a promising candidate for orthopedic implants in loading bearing applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app