Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Spectroscopic and Microscopic Study of Peroxyformic Pulping of Agave Waste.

The peroxyformic process is based on the action of a carboxylic acid (mainly formic acid) and the corresponding peroxyacid. The influences of processing time (60-180 min), formic acid concentration (80-95%), temperature (60-80°C), and hydrogen peroxide concentration (2-4%) on peroxyformic pulping of agave leaves were studied by surface response methodology using a face-centered factorial design. Empirical models were obtained for the prediction of yield, κ number (KN) and pulp viscosity as functions of the aforementioned variables. Mathematical optimization enabled us to select a set of operational variables that produced the best fractionation of the material with the following results: pulp yield (26.9%), KN (3.6), and pulp viscosity (777 mL/g). Furthermore, this work allowed the description and evaluation of changes to the agave fibers during the fractionation process using different microscopic and spectroscopic techniques, and provided a comprehensive and qualitative view of the phenomena occurring in the delignification of agave fibers. The use of confocal and scanning electron microscopy provided a detailed understanding of the microstructural changes to the lignin and cellulose in the fibers throughout the process, whereas Raman spectroscopy and X-ray diffraction analysis indicated that cellulose in the pulp after treatment was mainly of type I.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app