Add like
Add dislike
Add to saved papers

Gas-Phase Fragmentation Behavior of Oxidized Prenyl Peptides by CID and ETD Tandem Mass Spectrometry.

Farnesylation and geranylgeranylation are the two types of prenyl modification of proteins. Prenylated peptides are highly hydrophobic and their abundances in biological samples are low. In this report, we studied the oxidized prenylated peptides by electrospray ionization mass spectrometry and identified them by collision-induced dissociation (CID) and electron-transfer dissociation (ETD) tandem mass spectrometry. Modified prenyl peptides were generated utilizing strong and low strength oxidizing agents to selectively oxidize and epoxidize cysteine sulfur and prenyl side chain. We selected three peptides with prenyl motifs and synthesized their prenylated versions. The detailed characteristic fragmentations of oxidized and epoxidized farnesylated and geranylgeranylated peptides were studied side by side with two popular fragmentation techniques. CID and ETD mass spectrometry clearly distinguished the modified version of these peptides. ETD mass spectrometry provided sequence information of the highly labile modified prenyl peptides and showed different characteristic fragmentations compared with CID. A detailed fragmentation of modified geranylgeranylated peptides was compared by CID and ETD mass spectrometry for the first time. Graphical Abstract ᅟ.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app